

Object Oriented C in Botball
Justin Yu
Los Altos Community Team 16-0323

Object Oriented C in Botball

Abstract. ​Over the years, many teams have developed a set of libraries that perform
basic tasks such as driving forward a given distance, turning with a given radius, or
setting a servo’s position slowly with a given duration. These libraries are, in many
aspects, good ways to reuse code from year to year. However, given that the
KISSIDE no longer supports object oriented languages such as C++ or Python, the
libraries are often cluttered with constants that need to be manually customized. In
order to address these issues, I created a set of libraries for my team based on a more
intuitive approach, targeting those who are familiar with or interested in learning
object oriented programming (OOP).

1 Benefits of Object Oriented Programming

Why should any team switch to object oriented style in the first place? Wouldn’t the traditional
imperative style of C do the same thing? The short answer is: yes, OOP would accomplish the same
thing. However, though it may seem like a burden at first, there are actually many benefits to
adopting an OO paradigm.

1.1 Reusability

As mentioned before, OOP helps with the reusability of code from year to year. Instead of having to
modify the actual source of the libraries, teams only need to instantiate a new object, feeding the the
specs of that year’s robot into the constructor. In section 3, this concept is explained in more detail.

1.2 Encapsulation

Currently, many teams resort to using macros (​#define​) to declare global constants. Such
constants would include motor ports, the wheel diameter (used in calculating distance), the
horizontal distance between wheels (used in calculating radius), etc. While this is not necessarily a
bad thing, too many constants tend to clutter the code, making debugging and code revisioning
more difficult.

With an object oriented approach, these constants would be encapsulated in classes. For
example, all methods and properties related to the Wallaby controller would be encapsulated in a
Controller class; the same goes to the Create and the camera:

Figure 1

OOP makes it much easier to designate a property or function’s purpose. Furthermore,

integrating object oriented programming into Botball helps new programmers visualize and better
understand the program as they are able to interface with an object in code that is also tangible in
reality.

2 Methodology

In creating a new set of OOP libraries, I tried to mimic other OO languages like Java as much as I c-

ould, though limited by constraints of the C language. In each section, explanations are best
understood through the code examples.

2.1 C ​struct​ and Classes

typedef​ ​struct​ MyClass { ... } MyClass; ​// class declaration
extern​ MyClass new_object(); ​// constructor

MyClass object; ​// global variable

In C, there is no such thing as a ​class​keyword that you may find in other languages such as C++,
Java, etc. However, the C struct is similar in many ways. A struct is a data structure that contains a
group of variables called properties or attributes. The main caveat of structs is that functions cannot
be defined within them, nor can they inherit from other structs [1].

To assign a custom type name to a struct, I used the ​typedef ​keyword [2]. The
constructor, used to instantiate new instances of this class, is declared as a global function. The
global variable ​object​is used throughout the implementation as a substitution for the ​this
keyword.

In the code snippet, the constructor ​new_object​returns a struct with the type
MyClass​, and it is possible to create a variable (​object​) that has the type MyClass as well.

2.2 Properties (Instance Variables)

In OOP, a very important concept is that every instance of a class should be able to encapsulate its
own variables, hence the term “instance” variable. Adding properties to the previously defined class
is relatively easy:

typedef​ ​struct​ MyClass {
 int​ property;
} MyClass;

Using dot notation, it is possible to access and modify the instance variable,​ ​property​.
For example, I could print out the value using ​printf("%d", object.property); ​And
I could assign a new value using ​ ​object.property = ...;

2.3 Methods

Since structs do not allow function definitions or declarations inside them, assigning methods is
trickier. While a function itself cannot be stored within a struct, the ​address of the function can be
stored; the solution is to use a ​function pointer (a pointer that contains the address of a function)
[3]. Adding a few methods to our class, the class definition now becomes:

typedef​ ​struct​ MyClass {
 int​ property;

 ​void​ (*instance_method)();
 int​ (*instance_method_with_params)(int x, int y);
} MyClass;

Notice how the syntax is fairly straightforward between the two functions, using the ​*to
denote the pointer. After an object has been instantiated, I could call either function using dot
notation (i.e.​ ​object.instance_method()​).

2.4 Constructor

Everything up to this point has been declared inside a header file (​.h​), but to actually implement the
aforementioned properties, instance methods and constructor, there also needs to be an
implementation file (​.c​) similar to the ones that follows:

static​ ​void​ ​instance_method​() { ... }
static int ​method_with_params​(​int​ x, ​int​ y) { ... }

MyClass new_object() {
 MyClass instance = {
 .property = 4,
 .instance_method = &​instance_method​,
 .instance_method_with_params = &​method_with_params
 };
 object = instance; ​// workaround for ̀this̀ keyword
 ​return​ instance;
}

In this code snippet, the constructor, ​new_object​, creates and returns an instance of the
class. Within the instantiation of the struct are property assignments. The ​propertyinstance
variable, being an integer, is assigned a value of four while the two pointer properties are assigned
the address of their corresponding functions using the ​&operator. While the name of the method in

the implementation file doesn’t necessarily need to match the name of the property, ​the ​parameter
names and ​return type do. And although there are no arguments passed into the constructor, it is
possible — and in many cases very useful — to customize how the object is created through
parameters.

3 Components

My approach to modularizing the functionality of the KIPR library was to separate it into three
components: 1) a Create class 2) a Controller class 3) a Camera class. All of the code mentioned is
found here: ​github.com/justinvyu/botball/tree/master/classes​.

3.1 Create

The Create class refers to the iRobot Create, containing all the necessary movement, sensor, and OI
functionality. Referencing a global create variable defined in the class’s header file (similar to the
global ​objectvariable defined in the previous section), a Create object can be instantiated using
the ​new_create​ constructor.

Additionally, most of the Create functionality provided by KIPR has been ported, with
minor modifications such as the truncation of method names to stay consistent with object oriented
style. Other miscellaneous movement methods have been implemented (i.e. ​forward​,
backward​, left​, right​, etc.), which shows how OOP makes it easier to organize and add to
the complexity of a program.

create = new_create();

create.connect();
create.drive_direct(..., ...);

create.forward(10, 250); ​// distance, speed
create.left(90, 0, 250); ​// distance, radius, speed

3.2 Controller

The Controller class refers to the Wallaby, and it encompasses all the methods dealing with motor
movement, servo positions, and sensor outputs.

A controller can be instantiated using one of ​two ​constructors, the default being
new_controller​, which takes in four parameters including the motor ports for wheels and
other relevant measurements. The ​alternate constructor​, ​new_create_controller​, assumes

https://github.com/justinvyu/botball/tree/master/classes

that the controller being instantiated is attached to an iRobot Create, meaning that motor ports and
wheel measurements would be unnecessary since all movement is handled by a separate Create
object. Again, a global variable ​controlleris used, many KIPR functions have been ported, and
miscellaneous movement methods have been implemented.

// left_motor, right_motor,
// distance_between_wheels, wheel diameter
controller = new_controller(0, 1, 14.5, 5.0);
controller = new_create_controller(); ​// alternate constructor

controller.motor(controller.motor_left, 100);
controller.forward(10, 90); ​// distance, speed (0-100)

3.3 Camera

Finally, the Camera class encapsulates the functionality of the camera, another important piece of
hardware provided in the kit.

camera = new_camera();

camera.open();
printf("%d", camera.get_object_count(..., ...));

3.4 Reusability (cont.)

4 Inheritance

The last major aspect that object oriented programming is attributed with is inheritance. “Real”
inheritance is not possible in C without the help of some external libraries, but it can be achieved on
a much broader scale. Inheritance means that a child class can access all the properties and methods
of its parent class. In other words, a child class should ​encapsulate all the complexity of its
parent class, providing yet another layer of abstraction. In the example below, the Robot class
“inherits” all the functionality provided in the three component classes.

typedef​ ​struct​ Robot {
 Controller controller;
 Create create;
 Camera camera;
} Robot;

extern​ Robot new_robot();

Figure 2

Above is a diagram that models the organization of the Robot class. Within the Robot class

are three properties (controller, create, and camera) that all reference the bottom three component

classes. It’s important to note that by instantiating a new Robot object, a new controller object,
create object, and camera object are also created.

The robot object, therefore, would “own” a controller, a create, and a camera (like an actual
robot!). Each of the objects is instantiated in the subclass constructor after assigning all custom
properties and methods, looking something like this:

Robot new_robot() {
 Robot instance = { ... };

 instance.controller = new_create_controller();
 instance.create = new_create();
 instance.camera = new_camera();
 ​return​ instance;
}

In this new child class, the properties and methods of the individual component objects can
no longer be accessed directly, but the properties and methods defined in the child class still can.
This means that by referencing a component object using dot notation, the child class can then
indirectly access all other functionality ​[3].

robot = new_robot();
robot.controller.motor(..., ...);
robot.create.drive_direct(..., ...);
robot.camera.open();

5 Summary

As a brief summary, object oriented Botball allows for improved reusability of code from year to
year and the encapsulation of properties and functions. Classes are defined in header files, and the
properties and methods declared within them are implemented in a source file. The three example
component classes — Create, Controller, and Camera — demonstrate one possible implementation
using OO principles, though there are still numerous implementations out there. Lastly, inheritance
allows even more encapsulation.

If anything, object oriented Botball teaches important concepts such as defining classes and
accessing / modifying instance properties while gaining an understanding of the intricacies of the C
language. Please email me at ​justin.v.yu@gmail.com with any questions regarding either the libraries
or the implementation.

mailto:justin.v.yu@gmail.com

Abbreviations
1. OO = object oriented
2. OOP = object oriented programming
3. KIPR = KISS Institute for Practical Robotics
4. KISSIDE = KISS’s integrated development environment
5. OI = open interface

Sources

1. C - Structures,
http://www.tutorialspoint.com/cprogramming/c_structures.htm

2. Object Oriented Programming in ANSI-C,
https://www.cs.rit.edu/~ats/books/ooc.pdf

3. Classes in C
http://www.pvv.org/~hakonhal/main.cgi/c/classes/

https://www.cs.rit.edu/~ats/books/ooc.pdf

