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Abstract. Oceanic oil spill pollution poses a serious threat to marine ecosystems. 

Undetected spills from accidents or operational discharges from ships can harm 

marine life residing on the sea surface or on shore. Previous studies try to 

automatically detect spills using remote sensing imagery from synthetic aperture 

radars. However, the accuracy of the traditional algorithms is limited by the 

presence of look-alike biogenic films that have overlapping physical features with 

true oil spills. Difficulties remain in identifying useful features and their 

combinations to distinguish between the two categories. Here, we proposed a 

methodology based on a genetic algorithm to address this challenge. This procedure 

finds an optimal or near-optimal solution within a given search space by mimicking 

the natural processes of competition, reproduction, mutation etc. Our procedure 

also addresses the premature convergence problem commonly found in genetic 

algorithms. We tested the procedure on simulated datasets using published statistics, 

and our results show an average accuracy of 88.2% for oil spills, representing a 

statistically significant improvement over the literature (~82%). The optimized 

classification also reduces the time spent on look-alikes, allowing for a faster 

response to minimize environmental damage. 

 
  



1 Introduction 
 
1.1 Impacts of Oil Spills 

 One of the most pressing issues regarding oil spills is animal injury or mortality. This 

comes in many forms, including the consumption of oil-contaminated shellfish by sea otters and 

the death of seabirds when coated in an oil film. As demonstrated in the Exxon-Valdez oil spill of 

1989, shellfish absorbed the oil when residing in contaminated beds of water. Sea otters that later 

consumed these contaminated shellfish were harmed by the petroleum. The consumption of 

petroleum has been linked to issues in the renal, hematologic, and neurological systems [2]. 

Sea birds dive into the surface of the water to find food, but as they plunge past the 

petroleum layer, the birds get coated in a layer of oil, which is distributed over the bird’s plumage. 

As temperatures fall, the oil inhibits the plumage’s insulation and can lead to hypothermia or even 

death. In Spain, similar symptoms and environmental impacts were present five years after a major 

oil spill. Overall, both small and large oil spills can have devastating consequences that travel from 

the bottom of the food chain all the way up to human beings [4]. 

1.2 Remote Sensing 

Remote sensing (RS), the act of acquiring data pertinent to a certain object or area without 

physically touching the object, is accomplished using satellites or other high-flying aircraft 

instruments. There are two major categories of remote sensing: passive and active sensing. Passive 

remote sensing measures wavelengths from the Sun that reflect off the Earth’s surface, whereas 

active sensors produce their own frequencies to measure reflectance [15]. 

Radar is a form of active sensing that emits electro-magnetic waves to identify and map 

objects. It is commonly used for oil spill detection and many similar applications because radar 



data is consistent and not significantly affected by time of day, cloud cover or weather conditions, 

which is important for routine oil spill surveillance [6]. 

1.3 Synthetic Aperture Radar (SAR) 

SAR is a method of remote sensing captures high resolution 2-D maps of a certain topographical 

area with a relatively small antenna. SAR works by combining data collected from multiple 

positions in space to create a synthetic image. The combination of images is also the reason why 

SAR images inherently contain “speckle noise” [3]. 

Satellites that collect SAR data include the Sentinel-1, RADARSAT-1, RADARSAT-2, 

ENVISAT ASAR and SEASAT missions. Each SAR instrument can send out unique frequencies, 

referred to as their band. For example, NASA’s SEASAT satellite used an L-band system (with 

wavelength of 15-30 cm). The RADARSAT-1 and RADARSAT-2 missions currently use a C-

band system (with wavelength of 3.75-7.5 cm) to observe the ocean surface [12]. Along with band 

distinctions, SAR satellites also differ by their mode and their spatial resolution. A satellite’s 

spatial resolution measures the scaled width of each pixel in the received image. In this study, SAR 

data is in the form of backscatter values, calculated from the signal that reflects off the Earth’s 

surface. After calibration, backscatter values are transformed into data in decibels (dB). 

Polarization is used by satellites to measure magnitudes of reflection as data. Satellites 

measure the difference between the multiple types of polarizations to determine the reflectance of 

a certain area.  A radar system can have up to four channels of polarization: HH, VV, HV, and VH 

(H refers to horizontal, V refers to vertical). The first letter signifies the transmission polarization; 

the second letter signifies the receiving polarization. HH and VV are like-polarized because the 

transmission and receiving polarization is the same. HV and VH are cross-polarized because the 



transmission and receiving polarizations are perpendicular. Radar systems have the ability to use 

one, two, or four polarizations at once [16]. 

 

 
 
 
Figure 1. SAR image of the 2002 Prestige oil spill in 
Galicia, Spain after standard calibration and speckle 
filter processes (data preprocessing methods). Image 
generated from sample data provided by the 
European Space Agency. 
 

 

 

 

 
Figure 2. Distribution of backscatter values (mean = 
50.15, std. deviation = 1.49) for the spill in Figure 1. 
The red represents the pixels with intensities less than 
the threshold (47.17). 
 

 

 

 
 
 
 
Figure 3. Identified dark spots highlighted in red to 
correspond with the red histogram values in Figure 2. 
The boxed spill is an example of what a singular dark 
object looks like. 
  



 
Figure 4. Comparison between a verified oil spill (left) and a verified look-alike film 
(right). Figure adapted from Stathakis et al. [11]. 

 
1.4 Dark Object Detection 

Dark object detection finds possible oil spill candidates in SAR imagery. Oil spills and look-alike 

biogenic films are seen as dark spots on the ocean surface because they both dampen the radar’s 

emitted signal. Since reflectance from dark objects is lessened, there is a lower backscatter 

intensity compared to the surrounding sea. Figures 1 and 4 show example dark objects of verified 

oil spills and verified look-alikes. 

Conventional statistical approaches to dark object detection involve finding a local 

detection threshold value that separates dark object pixel values from everything else. Del Frate et 

al. [3] implemented object edge detection using histograms of the pixel data distribution. A recent 

study, described in Solberg [10] uses an adaptive threshold that automatically adjusts to be a certain 

distance from the mean backscatter value in a small viewing window. Kartathanassi et al. [5] uses 

a similar thresholding method that instead adapts to the overall brightness and contrast of SAR 

image. 

This study uses a simplified thresholding algorithm involving two main steps. The first is 

a fuzzy C-means clustering technique that finds the main data cluster’s mean and standard  

 



 
Table 1. Statistical parameters for features of oil spills and lookalikes, adapted from tables 
in Del Frate et al. [3] and Toupouzelis et al. [13]. 

 
deviation. This step’s purpose is to prevent false detection caused by outliers. The second step 

calculates the threshold based on the statistics (mean, standard deviation) of the cluster. Every 

value below the threshold is labeled a “dark object” pixel, identified in Figure 2 by the values 

highlighted in red. The end result of dark object detection on the image in Figure 1 is shown in 

Figure 3. From there, the image is segmented into individual dark objects such as the one boxed 

in white. 

1.5 Feature Extraction from Dark Objects 

Features are numerical values that describe the physical and geometric qualities of detected dark 

objects. Geometric features include the area, perimeter and shape factors of the formations, and 

physical features include the mean backscatter values of the object and of the surrounding  

# Features Oil Spills  Look-alikes  
  Mean (µ) St. Dev (s) Mean (µ) St. Dev (s) 

1 
2 
3 
4 
5 
6 

Area (A) 
Perimeter (P) 
Perimeter to Area (P/A) 
Complexity (C) 
Shape Factor I (SP1) 
Shape Factor II (SP2) 

30471.09 
2812.06 

0.21 
4.33 
5.72 
0.86 

55930.64 
3823.01 

0.14 
2.40 
4.80 
0.19 

47242.99 
4233.16 

0.25 
6.02 
4.06 
0.72 

116988.16 
5038.28 

0.19 
2.56 
4.51 
0.26 

7 
8 
9 

10 
11 
12 
13 

Object mean intensity (OMe) 
Object standard deviation (OSd) 
Object std. dev to mean ratio (OSd / OMe) 
Background mean intensity (BMe) 
Background standard deviation (BSd) 
Background std. dev to mean ratio (BSd / BMe) 
Ratio of std. dev to mean ratios 

43.57 
27.92 
0.72 

115.94 
44.28 
0.39 
1.84 

18.07 
7.19 
0.29 

18.56 
8.52 
0.08 
0.62 

46.40 
30.32 
0.72 

113.97 
46.80 
0.42 
1.73 

15.39 
6.51 
0.26 

17.52 
7.81 
0.07 
0.54 

14 
15 
16 
17 
18 

Mean contrast (BMe – OMe) 
Max contrast (ConMax) 
Mean contrast ratio (OMe / BMe) 
Std. dev contrast ratio (OSd / BSd) 
Local area contrast ratio (ConLa) 

72.36 
113.08 

0.38 
0.63 
0.39 

20.67 
18.02 

0.14 
0.10 
0.13 

67.58 
112.83 

0.41 
0.65 
0.45 

21.27 
17.56 

0.14 
0.10 
0.14 

19 
20 
21 
22 
23 
24 
25 

Mean border gradient (GMe) 
Border gradient std. dev (GSd) 
Max border gradient (GMax) 
Mean difference to neighbors (NDm) 
Spectral texture (TSp) 
Shape texture (TSh) 
Mean Haralick texture (THm) 

79.85 
226.62 

37.90 
35.86 
33.84 
0.22 

44.52 

14.38 
34.11 

7.87 
12.44 

8.44 
0.01 

17.69 

79.11 
234.92 
38.24 
31.84 
36.37 
0.23 

47.42 

11.66 
18.72 

7.50 
13.36 

7.58 
0.01 

14.85 



 
Figure 5. (left) Distribution for the areas of detected dark objects (in m2), with oil spills 
red and look-alike objects in grey. (right) Distribution for the mean of object backscatter 
intensity values (in decibels) in dark objects. 

 
ocean. These features are normally what manual oil spill inspectors would look for, and some or 

all of the features listed in Table 1 have been used in previous studies. 

2 Methodology 

Remote sensing applications for oil spill detection generally follow three steps: 1) dark object 

detection, 2) feature extraction from dark objects and 3) classifying the dark objects as either oil 

spills or lookalikes [12]. This study followed procedures from literature for steps one and two and 

focuses on improving the last step by using a genetic algorithm to optimize classification. 

2.1 Dataset 

Simulated data were generated from published statistics found in Toupouzelis et al. [13] and Del 

Frate et al. [3] due to the lack of verified oil spill datasets. A total of 400 labeled dark objects (200 

oil spills and 200 lookalikes) were initialized as the training dataset, and a total of 200 labeled dark 

objects (100 oil spills and 100 lookalikes) were set aside as the testing dataset. For each spill and 

lookalike, the features were generated randomly along a Gaussian distribution, using the statistics 

in Table 1. 



Figures 5 shows the distribution of the area (A) and mean of object backscatter intensities 

(OMe) for the generated dark objects in the testing dataset. The large overlap between the 

distributions shows that classifying between spills and lookalike objects is difficult (refer to Figure 

4 for comparison). However, some features such as area have less overlap than others, meaning 

that those features will be more useful in determining which distribution the dark object falls under, 

whether the numerical inputs match the oil spill distribution or the look-alike distribution. 

2.2 Classification 

This study determines whether a detected dark spot is an oil spill or a lookalike film using a single 

layer artificial neural network (ANN). The ANN model implements a softmax regression that 

multiplies the input features by weight coefficients and outputs either a zero (lookalike) or a one 

(oil spill). Since this study does not focus on the classification algorithm itself, the simplest and 

least computationally expensive single-layer ANN is preferred over a multilayer perceptron 

network outlined in Del Frate et al. [3]. The ANN is trained for 2,000 iterations over the training 

dataset, and the accuracy is produced by classifying the testing dataset with the trained model. 

Overall classification accuracy is defined as the proportion of objects correctly categorized by the 

ANN in the entire testing dataset. Oil spill detection accuracy, or the true positive rate, and 

lookalike detection accuracy, or the true negative rate, are the proportion of oil spills and the 

proportion of look-alikes correctly classified in the testing dataset, respectively.  

2.3 Feature Optimization using a Genetic Algorithm 

Conventional research on oil spills classify between oil spills and lookalikes based on arbitrarily 

selected features. Some of these features hold little to no weight in classification and add another 

layer of noise, lowering the overall detection accuracy. In many cases, using every feature does 

not make sense when classification can be improved by only using a subset of features as inputs.  



This study explores novel approaches to utilize a genetic algorithm in optimizing feature 

usage since the numerical features associated with a dark formation are ultimately the deciding 

factors for the classification algorithm. A genetic algorithm finds an optimal or near-optimal 

solution within a given search space by mimicking the natural processes of competition, 

reproduction, mutation etc.  

 This study uses a binary representation for the 25 features: a 0 means that the feature is 

excluded from the classification process, and a 1 means that the feature is included. A solution, or 

chromosome, is a set of 25 binary values, where each 1 represents a feature that will be passed into 

the classification ANN. Figure 6 shows the lifecycle of the genetic algorithm: the algorithm will 

continue until it has reached the specified maximum number of generations or when the algorithm 

has successfully converged on a chromosome. 

2.3.1 Initialization and Calculating Fitness 

The genetic algorithm in this study is initialized with a population of 20 randomly generated 

chromosomes. After training and testing the classification model with the randomly selected 

features, each chromosome is assigned a fitness value that is based on a predefined fitness function 

proposed by Siedlecki et al. [9]. Lower fitness values are associated with better solutions. The 

following function outputs the fitness of a chromosome x, where n represents the number of 

features used, r is the error rate (1 – overall accuracy) and m and t are experimentally defined 

constants that control the weight of the accuracy term. The genetic algorithm aims to minimize the 

fitness function, which is achieved in two ways: 1) a solution reduces the number of features used 

or 2) a solution increases the classification accuracy.  

 

 
 



 
Figure 6. Genetic algorithm overview 
(left) Lifecycle genetic algorithm operations: elitism, selection, crossover and mutation.  
 
(right) Simplified examples for each process in the genetic algorithm:  

1. Arbitrary fitness values were assigned to the chromosomes to show relative 
comparison (lower fitness values mean better solutions). 

2. Selection chooses the better solution out of a tournament of size 2. 
3. We see an index invert from a ‘0’ to a ‘1’ at a random index during mutation. 
4. We see two chromosomes swap a randomly selected interval during crossover. 

 
*There are 4 chromosomes and 5 features in the examples. The actual algorithm uses a population 
of 20 chromosomes with 25 features each.  



 The initial set of 20 chromosomes is referred to as the parent population of generation 0; 

each iteration of a genetic algorithm is called a generation. The 0th generation’s population will 

undergo a series of operations to produce child chromosomes, and the resulting set of 20 child 

chromosomes becomes the next generation’s parent population. The following sections will 

describe the four main biological operations used to evolve a population of chromosomes: elitism, 

selection, crossover and mutation. 

2.3.2 Elitism 

Elitism ensures that the best solutions of each generation will make it into the next iteration. 

Without this process, the genetic information of good solutions may, by chance, be discarded from 

the gene pool. The progress made on those chromosomes would be lost, making it extremely 

difficult for the algorithm to eventually converge on an optimal solution. In this study, the top 10% 

(two) of solutions are considered the “elites,” passed on to the following generation immediately. 

2.3.3 Selection 

Selection simulates competition in the mating process of reproduction. We used a tournament 

selection method to choose “male” and “female” partners. Each individual partner is selected by 

first creating a tournament consisting of 2 randomly chosen chromosomes. Then, the solution with 

the lower fitness is selected. The tournament size of 2 was determined after experimentation. In 

general, a larger tournament size exerts more competitive pressure on the population, which limits 

genetic diversity [1, 14]. Diversity can be lost in two ways: 1) a solution does not participate in 

any tournament due to random chance, and 2) a solution loses in the tournament that it is part of 

[7]. Thus, if each tournament consisted of 4 chromosomes instead of 2, a smaller number of unique 

chromosomes would contribute to diversity since it would be more likely for the same 

chromosomes to be selected and paired with each other. 



2.3.4 Crossover and Mutation 

Crossover mimics the biological process of meiosis (where the parent chromosomes will cross to 

form the offspring’s chromosomes). The present study implements a two-point crossover 

technique that swaps the information of two parent chromosomes in a randomly defined interval, 

producing two child chromosomes. The crossover rate is 90%, meaning that a majority of male-

female chromosome pairs will exchange genetic information in this fashion. The 10% of solutions 

that do not crossover are instead subject to single index mutation, which inverts the solutions at 

random indices (i.e., a “1” becomes “0” and vice versa). 

We hypothesize that crossover plays the largest role in evolving new, robust solutions, 

since a hybrid of two existing solutions has the potential to improve old chromosomes. Crossover 

works hand in hand with selection since the population is already filtered to exclude relatively bad 

solutions. Mutation is usually responsible for removing unnecessary features. If the classification 

accuracy produced from a solution is the same regardless of the presence of a feature, then that 

feature is not needed as an input. 

The processes of selection, crossover and mutation go on until 20 children are produced 

(including the “elites”), and those 20 chromosomes become the next generation’s population. The 

process starts all over again by reassigning fitness values. Each trial of the algorithm runs for 50 

generations. 

2.3.5 The Local Maximum Problem 

One problem that hinders a genetic algorithm’s ability to optimize is premature convergence. This 

issue is closely linked to the loss of genetic diversity in the population, since new solutions cannot 

be easily evolved when all or most of the chromosomes are identical. When either selection 

pressure or elitism is too extreme, the genetic algorithm will quickly (in under 10 generations) 



converge to a local maximum. The solution that the algorithm converges to does not reflect the 

best set of features that can be used to classify between oil spills and lookalikes. 

 This study implements a novel technique called adaptive chromosome replacement (ACR). 

When many individuals share the same genetic information, it is very likely that the identical 

chromosomes will be paired in crossover. This defeats the purpose of the crossover operation 

because the children produced will be exact replicas of the parents. ACR solves this issue by 

introducing new, randomly generated individuals whenever there is little deviation in the 

population. This technique was inspired by random offspring generation as described in Rocha et 

al. [8]. 

 During the first half of a 50 generation trial, ACR uses a double replacement method when 

the standard deviation of classification accuracies is under a given threshold. Otherwise, it uses a 

single replacement method. Double replacement means that, before crossover, if the pair of 

chromosomes are identical, each individual in the pair will be replaced by a randomly generated 

solution. Single replacement means that in the same scenario, only one chromosome will be 

exchanged. In a real world scenario where a population of organisms becomes too similar in 

genotype, the population is highly susceptible to factors like disease. Thus, there is a need for rapid 

mutation and evolution in order for the population to survive: ACR mimics this natural 

phenomenon by inserting random genes into a stagnating population. 

 During the second half of the trial, ACR uses single replacement whenever double 

replacement would apply. When there is adequate deviation within the population, ACR swaps 

one of the chromosomes with another solution in the population instead of using single 

replacement. Through experimentation with ACR, it is clear that double replacement is effective 



at maintaining genetic diversity. However, it is extremely difficult to converge when good 

solutions are being discarded constantly, which is why single replacement is preferred. 

3 Results 

We ran the genetic algorithm 15 times and recorded the best solution from each trial in Table 2. 

For each solution, we trained the classifier using only the features marked with a “1.” For example, 

the classifier for the first solution in Table 2 would only use the dark object’s area, perimeter, 

perimeter to area ratio etc. After the classification model was trained using the training dataset of 

200 oil spill objects and 200 lookalike objects, we used it to classify the testing dataset of 100 

spills and 100 lookalikes. We then recorded the fitness of the solution as it pertains to the genetic 

algorithm, the overall accuracy, the true positive rate (oil spill accuracy) and the true negative rate 

(lookalike accuracy). The discrepancy between the true positive rate and the true negative rate is 

unusual (for example, 91% compared to 75% in trial 4). We believe that the true negative rate and 

overall accuracy would increase with a more complex neural network (with convolution and 

multiple hidden layers). 

3.1 Summary and Comparisons 

The best overall accuracy recorded was solution 7 in Table 2, where 84% (168 out of 200) of dark 

objects were correctly classified. This solution classified 87% (87 out of 100) of oil spills correctly 

and 81% (81 out of 100) of lookalikes correctly. The best true positive rate among the 15 trials 

was 93%, the best true negative rate was 88%. The average of the oil spill detection accuracies 

among the 15 solutions was 88.2%. 

As a baseline for classification improvement, we trained and tested the classifier using all 

25 features. This gave an oil spill detection accuracy of 80%, a lookalike detection accuracy of 79% 

and an overall accuracy of 79.5%. A two proportion z-test to compare the oil spill detection 



accuracies with and without the genetic algorithm showed that the improvement (from 80% to an 

average of 88.2%) was statistically significant (p = 0.0559) when α = 0.1. In this case, comparing 

the true positive rate is most appropriate, since it is always better to misclassify a lookalike than 

to misclassify an oil spill. 

We compared our results to other machine learning approaches that did not have a feature 

selection (genetic algorithm optimization) component. Del Frate et al. [3] implemented a 

multilayer perceptron network using 11 features to classify 139 dark formations. Their neural 

network classified 82% of oil spills and 90% of lookalikes correctly. Solberg [10] introduced a 

statistical model trained on a database of 7,051 dark objects. Their results showed an accuracy of 

78% in oil spill classification (29 out of 37) and of 99% in lookalike classification (12,033 out of 

12,110) [12]. Again, a one-tailed hypothesis test against the oil spill detection accuracy for both 

of these studies showed that our oil spill classification results are statistically significant 

improvements (p = 0.0951 against Del Frate et al. [3], p = 0.06681 against Solberg [10]). 

3.2 Analysis of the Genetic Algorithm  

Figure 7 shows a plot of the mean overall accuracy over 50 generations. The sharp increase in the 

first 5 generations shows that the genetic algorithm is able to quickly evolve the population using 

the four operations elitism, selection, crossover, and mutation as described before. The algorithm’s 

progression slows down, gradually improving the mean accuracy until it reaches a near-optimal 

solution. The dips in mean accuracy show the effects of ACR. Every few generations, when the 

population of chromosomes becomes too similar, ACR will add back genetic diversity by 

introducing new, randomly generated solutions. Since it is very likely that the new solutions have 

lower overall accuracies, the mean accuracy as seen in the graph falls. After the initial dip in 

accuracy, the algorithm is able to evolve more accurate solutions with the diverse gene pool. 



3.3 Feature Usage Ranking and Evolution 

The feature usage for the 15 trial solutions is organized in Table 3. The most robust features 

are the ones used in multiple solutions, since the algorithm converges to those features regularly 

even though it is initialized in each trial with a completely random population.  

Figure 8 is a more detailed look into the convergence process and the evolution of feature 

usage over the course of a single trial. In the beginning, solutions are completely random, so feature 

usage is spread out roughly evenly. Ten generations in, a few features colored in red become 

prominently used throughout the population. At thirty generations, the most robust features are 

used in the large proportion of solutions, although ACR still manages to maintain genetic diversity 

with features colored in blue. In the second half of the trial, the algorithm converges to a solution 

using 14 features. 

4 Illustrations 

 
Table 2. The best solutions recorded from 15 different trials of the genetic algorithm. A 
highlighted ‘1’ means that the feature at that index (see Table 1) is used in classification. 
Notably, the first and tenth features (area and background mean intensity) were used in 
every solution. The average true positive rate (oil spill detection accuracy) is 88.2%. 

 



 

Figure 7. The mean classification accuracy of the population of solutions throughout the 
course of one trial (50 generations): ranges from around 69% to 81% in overall accuracy 
for an improvement of 12% accuracy from the original population. 

 
 
 

Frequency Used Features 
81-100% 1, 10, 15, 22 
61-80% 2, 23, 8, 5 
41-60% 24, 25, 4, 6, 14, 17, 19 
≤ 40% 9, 11, 12, 13, 16, 18, 3, 7, 20, 21  

 
Table 3. Feature ranking among the 15 trial solutions: the four best features, used in 
virtually every solution in Table 2 are area (1), background mean intensity (10), max 
contrast (15) and mean difference to neighbors (22). Refer to Table 1 for the feature 
descriptions that correspond to the numbers. 



 
Figure 8. The evolution of feature usage over the course of a single run (50 generations) 
of the genetic algorithm. This particular run converged to solution 7 in Table 2. Features 
are labeled (1-25) according to Table 1. For every feature K, the frequency that it is used 
is calculated by taking the number of appearances in the population divided by the 
population size, and the corresponding cell is colored according to the legend on the right.  



5 Conclusion and Future Work 

Even though SAR is already used extensively in the field and has been recognized as an 

effective tool in assisting oil spill detection efforts, it isn’t a perfect method. The accuracy of these 

methods can be further increased with new artificial intelligence and machine learning 

technologies. For example, it is possible to improve the classification algorithm by adding 

convolution and multiple hidden layers. 

We would like to conduct more trials of the algorithm, using different methods for 

elimination of features. Taking the features and isolating the ones that provide the most success, 

as well as combining features that would have normally been eliminated may further improve the 

accuracy. Because the algorithm is still imperfect, data preprocessing methods may also be 

improved upon. Because the raw data does not include optical data, it is hard to discern between 

different types of oil spills. By introducing other features, such as wind patterns, it may become 

easier to create a distinction between oil spills and look-alikes.   

Additionally, the data used in the tests were synthesized from previous studies and were 

not actual datasets from satellites. This may have led to, leading to different test results. The access 

to verified SAR data for oil spills is limited and, unfortunately, our application for a dataset hosted 

by the Canadian Space Agency was not approved. If satellite data were used in training and testing, 

our results would align with those of past results more accurately. 

 Overall, feature optimization using a genetic algorithm proved to be an effective way to 

improve oil spill detection. The adaptive chromosome replacement technique also counteracted 

the genetic algorithm’s natural tendency to converge quickly and can be studied further in future 

research. The implementation of ACR raises another area for further research, which is the addition 

of other operations to the genetic algorithm to extend its functionality. 
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