
 

 

 
 
 
 
 
Deep-Learning Based Immunohistochemistry Scoring Predicts Progression 
and Prognosis of Human Esophageal Cancer 
 

Abstract. Esophageal cancer (EC) is a highly lethal malignancy worldwide with a 5-
year survival rate below 20%. Accurate diagnostic tools predicting clinical outcomes 
and disease progression are desperately needed. We developed PathoNet, a novel 
deep-learning-based diagnostic software that automates immunohistochemistry 
scoring. PathoNet was uniquely designed with four steps: (1) formatting images into 
trainable tiles, (2) passing tiles through FilterNet, a convolutional neural network, 
and (3) ExpressNet, another convolutional neural network; and (4) aggregating tile 
scores to a final score. Instead of using packaged pre-trained models, we created our 
FilterNet and ExpressNet using the open-source PyTorch library, modeling after 
AlexNet architecture. PathoNet is currently optimized to score E-Cadherin 
(PathoNet-E-Cad), a biomarker that may predict EC progression and overall 
survival. Trained with 3072 tiles, PathoNet scores showed 85.62% tile-level 
concordance and 91.67% image-level concordance with pathologists, outperforming 
published automated immunohistochemistry scoring systems. We demonstrated the 
clinical potential of PathoNet-E-Cad by testing on 473 patient samples. The 
PathoNet-E-Cad score is associated with esophageal disease progression. Low 
PathoNet-E-Cad score is significantly correlated with better overall survival 
(p=0.043) and predicts optimal treatment outcomes of EC (p=0.027). More 
biomarkers are being integrated into PathoNet to further facilitate EC prognosis. 
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1 Introduction 

1.1 Esophageal Cancer 

Esophageal cancer is the eighth most common cancer and the sixth most common cause 

of cancer related deaths worldwide.1 There are two major histopathological subtypes of 

esophageal cancer: esophageal squamous cell carcinoma (ESCC) and esophageal 

adenocarcinoma (EAC).2 These two subtypes differ significantly in regards to epidemiological 

distribution, risk factors and clinical and prognostic relevance. EAC predominates in certain 

developed nations, for example, the United States. About 87% of all esophageal cancer cases 

globally are ESCC, with the highest incident rates seen in the Asian/Eastern countries.  

Despite many advances in screening, diagnosis and treatment, the prognosis of ESCC is 

still poor: the 5-year survival rate for ESCC patients ranges from 10% to 20%.3 The current 

optimal treatment option is neoadjuvant chemoradiation therapy with surgery (CRT), and other 

options include neoadjuvant chemotherapy, neoadjuvant radiation with surgery and stand-alone 

surgery. At present, clinical treatment decisions are based on tumor-node-metastases (TNM) 

staging; however, the clinical outcomes often display considerable variability in disease 

progression and survival. Better knowledge of patient prognosis and treatment prediction would  

 

 

Figure 1. Esophageal cancer progression. Esophageal Squamous Cell Carcinoma is illustrated in the upper 
row, and Esophageal Adenocarcinoma in the lower row.  
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significantly help to facilitate personalized therapy decision-making for esophageal cancer  

patients.  
 

Several emerging biomarkers evaluated by immunohistochemistry (IHC) have been 

reported as potential prognostic and predictive biomarkers, including E-cadherin (E-Cad), the Gli 

family of transcription factors and several molecules in signaling pathways such as Wnt, MAPK, 

and RAS signaling.4 E-Cad is a 120-KD transmembrane calcium-dependent cell adhesion protein 

that has been implicated in cancer progression and metastasis.5 Evidence to support E-Cad’s 

prognostic value has been accumulated in spite of controversial and inconclusive reports in 

literature. The lack of a well-established and standardized scoring system may be one of the 

reasons contributing to the controversy. Here, we propose that an automated and standardized 

diagnostic/prognostic tool may be a promising and clinically practical solution. 

1.2 Machine Learning in Medical Imaging 

Machine learning is a rapidly expanding sub-field in medicine, with applications ranging 

from ailment diagnosis to biotechnological structure design.6 In recent years, the relevance of 

machine learning in cancer diagnosis has been considered.7 Previous attempts at classifying 

breast cancer and lung cancer in slide H&E images resulted in 70% and 79.7%8 classification 

accuracies, respectively, using a convolutional neural network (ConvNet).9 No studies using a 

similar ConvNet solution have been conducted on esophageal cancer, nor in developing 

automated and standardized diagnostic/prognostic tool.10 We propose a novel application of 

machine learning technology to standardize IHC-stain intensity scoring for esophageal cancer. 

1.3 Objectives  

The current project aims to develop a novel deep learning based automated 

diagnostic/prognostic tool and provide proof-of-concept evidence for its clinical utility in 
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indicating prognosis and predicting clinical response of current standard care CRT in order to aid 

personalized therapy decision-making for esophageal cancer patients. 

2 Methodology 

2.1 Esophageal Cancer Patient Samples 

A total of 473 formalin-fixed, paraffin-embedded (FFPE) tissues were retrieved. Among 

all of these patients, 443 of them were originally diagnosed with either esophageal inflammation, 

intraepithelial neoplasia, or early stage and mid-late stage esophageal squamous carcinoma 

(ESCC). Additionally, 30 samples from esophageal adenocarcinoma (EAC) were collected. 

FFPE tissue blocks slides were cut into 5µm-thick sections. Written consent was obtained from 

each patient before specimen collection. 

2.1.1 Immunohistochemistry Staining 

Immunohistochemical staining (IHC) was performed following standard procedures. 

Briefly, FFPE slides were deparaffinized using xylene. Heat-mediated antigen retrieval was 

performed using a citrate buffer. Slides were stained by means of IHC for E-Cadherin (rabbit 

anti-human E-Cadherin; Cell Signaling) at a 1:200 dilution, EMX2 (rabbit anti-human EMX2, 

Pierce) at 1:400, and Gli2 (goat anti-human Gli2, Abcam) at 1:100. Antibody staining was 

visualized with DAB (Histostain Plus Broad Spectrum, Invitrogen) and hematoxylin counterstain 

(Fisher Scientific). Representative fields were photographed using an Olympus BX43 

microscope (Olympus, Japan) and examined for positive nuclear staining.  

2.1.2 Pathologist Labeling 

The IHC staining of E-Cadherin was scored by a pathologist who was not aware of the 

corresponding clinical information. An IHC score was assigned by a combination of staining 

intensity (no staining = 0-, light yellow staining = 1+, yellowish brown staining = 2+, strong  
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brown staining = 3+) and the percentage of positively stained cells. A score of 0- was defined as 

negative, and a score of 1+, 2+, or 3+ was defined as positive. 

2.2 PathoNet 

We have developed a methodology called PathoNet. PathoNet is designed with four main 

steps: 1) preprocessing and segmenting the slide images into tiles (image segmentation), 2) 

filtering out the individual tiles which do not contain cells (FilterNet), 3) assigning intensity 

scores for the remaining tiles (ExpressNet) and 4) using all individual intensity scores to produce 

an aggregate score representative of the whole image (final scoring systems). 

2.2.1 Dataset 

The dataset consists of E-Cadherin IHC images of 72 esophageal tissue samples at 10x 

magnification with a resolution of 1944x1944 pixels. Two training-testing setups have been 

evaluated, the Random setup and Balanced setup. The Radom training setup employs random 

assignment to assign the 72 slide images into a random training set of 48. The Balanced setup is 

curated to create a balanced training set of 48 images with a similar distribution of disease stages 

as the overall 473 patient cohort. The two setups use the same testing set of 12 images during 

performance comparison of ExpressNet. The testing set for the final scoring system is composed 

of 24 images that are not included in the Balanced training set.  

Figure 2. Flowchart of the PathoNet methodology. First, a slide image is segmented into 64 tiles. Each of these 
images is then passed into FilterNet, which determines if a particular tile contains cells or not. Tiles with cells 
are then passed into ExpressNet, which gives an intensity score for each tile. Final scores are calculated using the 
system described in Section 2.2.5, which is not shown in the diagram. 
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2.2.2 Image Segmentation 

Each of 72 slide images is segmented into 64 square tiles, creating an 8⨉8 grid of 

243x243 pixel image tiles. There are 4,608 tiles useable for training and testing.11 Pathologists 

manually labeled the 72 images at image level and the 4,608 tiles following features: 1) the 

overall score of the tissue sample at image level, 2) the individual scores of the 64 image tiles, 3) 

the percentage of area covered by cells in each image tile and 4) the percentage of the area 

covered by tumor cells in each image tile. To create training and testing sets for FilterNet and 

ExpressNet, the tiles are split at the image level, that is, all 64 individual tiles of one image are 

assigned together to either the training or testing set. 

2.2.3 FilterNet 

Individual tiles are filtered based on percentage of cell coverage. A deep convolutional 

neural network (deep ConvNet), called FilterNet, has been constructed to perform the filtering. 

FilterNet models the idea of stacking layers from AlexNet12, consisting of two convolutional 

layers with the kernel sizes of 3x3.13 More specifically, the convolutional layers are followed by 

a rectified linear unit (ReLU) and a MaxPooling operation, all leading into two fully connected 

layers that feed to the output. The specific model structure is design to have less layers than 

AlexNet to adopt with smaller number of training images compared to the ImageNet task of 

AlexNet. To train the FilterNet, each of 4,608 image tiles in the dataset are assigned a new label: 

0 if the percentage of cell coverage is less than or equal to 50% and 1 if the percentage of cell 

coverage greater than 50%. Probabilities for each class are generated using a multinomial logistic 

regression (Softmax) operation, and the higher probability of the two classes is picked as the 

final prediction. 
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2.2.4 ExpressNet 

A second deep ConvNet, called ExpressNet, has been developed for the second 

classification of staining expression intensity on individual image tiles. This network’s 

architecture (Figure 3) is also obtained from modifying the AlexNet, adding in dropout 

operations with a probability of 20% before each fully connected layer to prevent overfitting.14 

Similar to FilterNet, a softmax operation was performed to generate probabilities, and the highest 

probability out of the four categories—0- as low expression, 1+ and 2+ as intermediate 

expression and 3+ as high expression—was assigned as the prediction. To train the ExpressNet, 

individual tiles from the training cohort are passed in with intensity labels for either twenty or 

thirty epochs. 

2.2.5 Final Scoring Systems  

After individual tiles pass through FilterNet and ExpressNet, the staining intensity scores 

predicted by ExpressNet are aggregated to produce a final intensity score of the entire image 

using PathoNet’s scoring algorithm. Three different scoring methodologies are evaluated: 1) 

weighted average scoring, 2) majority votes scoring and 3) modified majority votes scoring using 

a 30%-threshold pathologist rule. 

Figure 3. Flowchart of the ExpressNet architecture, which contains fewer convolutional layers compared to AlexNet. 
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The weighted average scoring system first normalizes the output from ExpressNet by 

converting the largest of the four output energies yi,k into a probability pi,k that image tile i out of 

64 total tiles belongs to that label k (Equation 1). This process is performed over all 64 tiles to 

find probabilities of "# being the true label, calculating the weighted average $% of the entire slide 

image as a continuous value ranging from 0-3 (Equation 2).  

The majority votes system tallies individual predictions for tiles, and the label with the 

most tallies is chosen as the output. 

The 30%-threshold system is designed by learning from how pathologists conventionally 

score the images. Built on top of the majority votes system, this system chooses a higher index 

(3+ > 2+ >1 + > 0-) as final output for the image when the higher index has at least 30% of 

votes, even if a lower index holds the most votes.  
2.3 Statistical Analysis 

Statistical analysis was performed in Microsoft Excel and OriginLab Origin 9.0. Machine 

learning performance was assessed with accuracy and F1 scores. TP, FP, FN and TN stand for 

true positive, false positive, false negative and true negative. 

 

 

(1) (2) 

(3) 

(4) 

(5) 

(6) 
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Clinical significance was assessed by Kruskal-Wallis H test followed by a post-hoc 

Conover test, Pearson chi-square test and a Kaplan-Meier curve with a log rank analysis. We 

used an alpha value of 0.05 to determine statistical significance.  

3 Results  

3.1 E-Cadherin analysis in patient esophageal tissues 

We systematically investigated protein expression levels of E-Cad, EMX2 and Gli2 as 

three potential progression and prognostic biomarkers in all 473 patients’ specimens. On the 

progression of ESCC, histologic analysis showed 38 (8.6%) inflammation, 35 (7.9%) low grade 

intraepithelial neoplasia, 35 (7.9%) high grade intraepithelial neoplasia, 212 (47.9%) early stage 

ESCC, and 123 (27.8%) mid-late stage ESCC (Table 1). An additional 30 EAC samples were 

also included in the analysis. Protein expression levels were characterized by IHC (representative 

positive and negative E-Cadherin expressions in different esophageal disease stages are shown in 

Figure 4) and scored on a scale of 0-3 (negative, mild, moderate and strong positive) (Figure 5). 

The score was determined by a pathologist and recorded as “Pathologist Score.” The images 

serve as our unique dataset for PathoNet development.  

3.2 Development of PathoNet E-cadherin Score  

PathoNet process has four main steps: 1) preprocessing and segmenting the slide images 

into tiles (image segmentation), 2) filtering out the individual tiles which do not contain cells 

(FilterNet), 3) assigning intensity scores for the remaining tiles (ExpressNet) and 4) using all 

individual intensity scores to produce an aggregate score representative of the whole image (final 

scoring systems). The performance of individual step and overall process was evaluated 

systematically.  
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From our unique dataset described above, we chose images of tissue samples from 72 

patients to develop PathoNet. 

 

Table 1. Patient Information 

Figure 4. Representative “+” and “-” IHC staining of E-Cad in different esophageal disease stages. A-E) 
Positive (+) staining of E-Cad. F-J) Negative (-) staining of E-Cad. Disease stages are labeled under each 
image.  

Figure 5. Representative scores of IHC staining of E-Cad. From left to right, the score is 0-, 1+, 
2+, 3+ (negative, mild, moderate and strong positive), respectively.  
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3.2.1 FilterNet Performance 

Trained on individual image tiles, the FilterNet achieved a 94.53% classification 

accuracy in distinguishing between tiles that had a large percentage of the area covered in cells 

and tiles that had little to no cell coverage. 

3.2.2 Overfitting of ConvNets 

The ExpressNet was trained for up to 30 epochs, and our results suggested that the model 

trained for only 20 epochs produced a higher classification accuracy on the testing set. The  

disparity between more epochs of training and classification accuracy is due to overfitting, which 

occurs when the weights of the neural network are too highly specified for the training dataset.  

Figure 6. The average loss of 
ExpressNet collected over 30 
epochs. Note that the loss 
flatlines after 20 epochs, 
meaning that classification 
accuracy no longer increases 
after that point. 

Figure 7. ExpressNet training set sample distribution in Balanced setup and Random setup. The 
training set in Random setup was obtained by random assailment and that Balance setup by manual 
curation. A) Sample distribution by image level IHC score. B) Sample distribution by disease stages. 
Balanced setup distribution mimics overall patient sample distribution summarized in Table 1. 
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We decided to use the ExpressNet for 20 epochs, since further training no longer reduced loss 

(Figure 6).  

3.2.3 ExpressNet Performance 

ExpressNet generates tile level classification of 0-, 1+, 2+ and 3+ for E-Cad expression 

scores. We compared the ExpressNet performance of the Random setup (training set by random 

assailment) and Balance setup (training set by manual curation) with training set distribution 

illustrated in Figure 7. The overall accuracy of 768 tiles from 12 images was 85.62% of Balanced 

setup, rising from 70.30% of Random setup (Table 2).  

To have a better understanding of advantages that the different datasets provided, we 

performed principal component analysis (PCA) to display the features extracted by the 

ExpressNet (Figure 8). The PCA charts show that the ExpressNet trained on the curated dataset 

Figure 8. Principal components analysis of machine learned features of A) Random 
setup and B) Balanced setup. Balanced setup has a better separation of features than 
Random setup. In this case, labels 1+ and 2+ are combined as “intermediate” to show 
clearer divisions. 
 

Table 2. Classification performance of the ExpressNet with the Random training set and 
the Balanced training set. The F1 score, a measure of precision and recall, was calculated 
for each model at each level. 
 



 12 

(Balanced setup) had better separation of features than the ExpressNet trained on the randomized 

dataset (Random setup) (Figure 8).  

3.2.4 PathoNet Final Scoring System Performance 

The final scoring system aggregates 64 individual tile classifications to produce an image 

level score. We compared the performance of three scoring systems 1) weighted average, 2) 

majority votes and 3) a 30%-threshold system by testing them with 24 images.  

The weighted average system produced a continuous value from 0-3. The root mean 

squared error (RMSE) of the weighted averages compared to the true integer labels was 0.5685. 

To calculate accuracy, we found the label that was closest to the continuous value by rounding it 

to the nearest integer. Then, comparing those rounded predictions to the true labels yielded a 

66.67% accuracy where 16 out of 24 testing images were correctly classified.  

Unlike the weighted average system, the majority votes system returned integer outputs 

for predictions, where 21 out of 24 testing images were correctly classified, yielding an 87.5% 

accuracy. 

The 30%-threshold system is based on the manual scoring rule of pathologists, achieving 

the best performance with an accuracy of 91.67%, where 22 out of 24 testing images were 

correctly classified. 

Therefore, we finalized the PathoNet final scoring system with the 30%-threshold 

method. The PathoNet E-Cad method, with an overall accuracy of 91.67%, outperforms previous 

literature15.  

3.3 PathoNet E-Cad score serves as a promising progression and prognostic 

biomarker in esophageal cancer  

3.3.1 PathoNet E-Cad score serves as a promising progression biomarker in ESCC 
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To evaluate if PathoNet E-Cad is a promising biomarker in esophageal cancer, we 

applied the newly developed tool PathoNet to determine E-Cad expression levels in all patient 

samples.16 The PathoNet E-Cad score presented different distribution of E-Cad protein 

expression at different disease stages of ESCC progression (Figure 9). In order to test if PathoNet 

E-Cad varies significantly at different disease stages, we employed the non-parametric Kruskal- 

Wallis H test, the result of which revealed the expression difference was significant between 

individual groups (p=0.024, Table 3). Subsequently, Conover tests were performed for pairwise 

multiple comparisons to discern which of many possible sample pairs were significantly different 

(Table 3). Significant difference was observed between two ESCC stages (mid-late and early)  

Table 3. E-Cadherin analysis of 
different disease stages in 
esophageal cancer. Kruskal-
Wallis H test and post-hoc 
Conover test were employed to 
access distribution difference. 
P<0.05 was considered 
significant and labeled with *.  
 

Figure 9. The distribution of PathoNet E-Cad 
score across A) different disease stages, B) 
two subtypes as squamous-cell carcinoma 
(ESCC) and adenocarcinoma (EAC) and C) 
pre-cancer stages and cancer. 
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and three pre-cancer stages (HIN, LIN and inflammation). respectively, supporting the 

hypothesis that E-cad expression changes during ESCC progression and that PathoNet E-Cad 

may serve as a progression biomarker for ESCC.17 Consistently, a Pearson Chi-square test 

conducted between ESCC and pre-cancer stages showed a significant difference (P=0.0004 

P<0.001), further suggesting PathoNet E-Cad as a good biomarker to differentiate ESCC from 

pre-cancer stages.18 No significant changes were observed between HIN and LIN, or between 

mid-late and early ESCC, indicating that PathoNet E-Cad expression changes were not a stand-

alone marker to distinguish stages within intraepithelial neoplasia or ESCC as shown in Table 3.  

Further analysis revealed that PathoNet E-Cad exhibited distinct distributions between ESCC 

and EAC (P=1.3E-08, P<0.001) (Figure 9), consistent with the consensus that the two subtypes 

of esophageal cancer significantly differ in molecular mechanisms. 

3.3.2 PathoNet E-Cad serves as a promising prognostic biomarker in ESCC 

To investigate if PathoNet E-Cad is a prognostic biomarker in ESCC, we analyzed the 

correlation between PathoNet E-Cad scores and patients’ overall survival as well as their 

treatment strategies. Data were collected from 56 cases of esophageal patients that had 

undergone surgery with neoadjuvant chemoradiation therapy (CRT) (n=19), surgery with 

neoadjuvant radiation therapy (n=10), neoadjuvant chemotherapy (n=17) or surgery alone  

Figure 10. PathoNet E-Cad score may serve as a prognostic marker. Kaplan-Meier Curves for 
the overall survival of A) all ESCC patients and B) for patients treated with CRT. Log rank test 
was performed to generate p values, and P<0.05 was considered significant and labeled with *. 
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(n=10). A high PathoNet E-Cad score is significantly associated with improved overall survival 

in all 56 patients when analyzed with a Kaplan-Meier Curve to generate a log rank p-value of 

0.043 (Figure 10A). The median overall survival was 36.6 months (95% confidence interval 

26.3-46.9 months) vs 59.5 months (95% confidence interval 47.9-71.2 months). Among all 

treatment strategies, CRT is currently the most optimal method to manage resectable ESCC. 

Notably, a high PathoNet E-Cad score is significantly associated with improved overall survival 

in patients with CRT (Figure 10B) (p=0.027). The median overall survival was 32.7 months 

(95% confidence interval 17.7-47.6 months) vs 59.9 months (95% confidence interval 43.5-76.3 

months). The result strongly suggested PathoNet E-Cad as a prognostic biomarker as well as 

predictive marker for ESCC patients with CRT treatment. We observed a separation of OS 

survival curves in neochemotherapy and neoradiation groups; however, the difference was not  

very significant (p > 0.05). No difference was found in patients who had undergone stand-alone 

surgery. 

3.3.3 EMX2 may augment prognostic value of PathoNet in ESCC 

We hypothesize that the integration of multiple biomarkers into PathoNet which is further 

augmented with an algorithm based final scoring system would significantly improve the 

performance of PathoNet as a prognostic and diagnostic tool and thereby its clinical utility. 

Several categories of molecules are associated with esophageal cancer progression and 

prognosis, such as those in the Wnt and Hedgehog signaling pathways. We investigated the 

Figure 11. Biomarkers 
evaluated by IHC and 
ready for PathoNet 
modeling. A) E-Cad, B) 
Gli-2 and C) EMX-2 
showed different staining 
patterns. 
 



 16 

expression of new biomarkers EMX2, a homeo-domain containing transcription regulator, and 

Gli2, downstream transcription factor of Hedgehog signaling in 473 patients samples (Figure 

11).19 Preliminary data based on pathologist score showed that EMX2 was associated with 

overall survival (OS) in a limited number of ESCC patients treated with neoadjuvant 

radiotherapy (n=10, p=0.028*). Efforts have been made to train PathoNet with EMX2 and Gli2. 

4 Discussions and Future Directions 

In this project, we have developed a novel deep learning based diagnostic tool called 

PathoNet for predicting progression and prognosis of esophageal cancer patients and established 

proof of concept evidence for its potential clinical application.  

The benefit of using computer-aided diagnosis for tissue biomarkers in pathology has not 

been well-established. Recently, research has provided an increasing amount of evidence to 

suggest that the capability of deep learning to achieve complex pattern recognition could lead to 

a new generation of computer-aided diagnoses. Major efforts in the field of pathology has been 

made in classification of tumor vs. non-tumor tissues, however the biomarker score based 

diagnosis, such as HER2 IHC evaluation and E-Cad in the current project, has very limited 

progress. Compared to recent machine learning attempts to classify IHC-staining intensities, our 

results show an improvement with a classification accuracy on an individual tile basis of 85.62% 

compared to 83% in Vandenberghe et al.15Our results showed that F1 scores for classifying 

individual tiles labeled 1+ or 2+ were low compared to tiles labeled 0- or 3+ (Table 2). Our 

discordance analysis (Figure 12) showed this same trend, where the larger bubbles on the (0, 0) 

and (3, 3) points showed high concordance for tiles labeled 0- and 3+. The smaller bubbles in 

between showed discordance for tiles labeled 1 and 2. In context, this means that the network is 

able to distinguish between negative expression (0-) and strong positive expression (3+) at tile 
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level more easily than it can distinguish low to moderate positive expression (1+, 2+). We 

hypothesize that the reason for this lies in our skewed dataset, since a majority of tiles is labeled 

either a 0 or a 3. More specifically for our testing dataset, 28.2% of individual tiles was labeled 

as 0 and 42.5% was labeled as 3, leaving only 11.7% labeled as 1 and 16.7% labeled as 2. In 

addition, this trend is consistent with published data where intensity based scoring, i.e. 

distinguishing 1+ and 2+, is an area ConvNet in general needs improvement15. Historically, 

pathologists manually label whole slide images. As an automatic and computer-aided approach, 

PathoNet can be applied to standardize IHC scoring and remove the subjective and error-prone 

procedure by pathologists.20 Potts et al.21 states that discordant scoring of staining intensity 

between pathologists is largely due to tumor heterogeneity. It was found that tissue samples with 

scores +1 and +2 have the highest levels of tumor-level heterogeneity, consistent with the results 

of the classifier. Although this automated system still requires input data from digital microscopy 

images, which could vary depending on where the data were retrieved from22, this study did not 

Figure 12. Discordant analysis of 
ExpressNet for tile level scoring. 
ExpressNet scores at x axis are 
compared with Pathologist scores at y 
axis of 0-, 1+, 2+ and 3+ (0-3 in the 
chart). Bubble position shows the 
comparison of ExpressNet and 
Pathologist scores. The size of bubbles 
corresponds to the number of samples 
that fall into each category.  
 

Figure 13. The discordant images from overall 
performance testing. Image A was classified as 0- by the 
ExpressNet, and its pathologist score is 2+. Image B was 
classified as 3+ by the ExpressNet, and its pathologist 
score is 2+. 
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examine slide samples retrieved from different labs. Final results from testing the PathoNet 

methodology showed 2 out of 24 testing images, shown in Figure 13, as incorrectly classified. 

Reanalysis of these two discordant cases help us improve our algorithm to further distinguish 

tumor cells from non-tumor cells. To improve the technical and clinical performance of PathoNet 

as a prognostic and diagnostic tool, we have initiated the following efforts. First, we look to 

provide the PathoNet model with more training data with more labeled features, which would 

increase the classification accuracy for individual tiles. Second, we will further define a final 

scoring system by integrating more features. Third, we have started to incorporate more 

biomarkers, such as EMX2 and Gli2, as biomarker panels provide more clinical and mechanistic 

information. Finally, we will generate a prognostic/diagnostic score by integrating individual 

biomarker scores with a new scoring algorithm. We believe deep machine learning based 

diagnostic software holds the promise to provide a clinically useful tool to address needs such as 

esophageal cancer prognosis as studied in this project.  

5 Conclusions 

PathoNet is, in this study, optimized to score E-Cadherin, a biomarker that may predict 

EC progression and overall survival. Trained with 3,072 tiles, PathoNet E-Cad scores showed 

tile-level concordance with pathologists of 85.62% with 1536 tiles and image-level concordance 

of 91.67%, outperforming published automated immunohistochemistry scoring systems. We also 

demonstrated the clinical potential of PathoNet E-Cad by testing on 473 patient samples. The 

score is associated with esophageal disease progression. Low scores are significantly correlated 

with better overall survival (p=0.043) and predict optimal treatment outcomes of esophageal 

cancer (p=0.027). In the future, more biomarkers will be integrated into PathoNet to further 

facilitate esophageal cancer prognosis. 
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